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The facile ring opening of epoxides makes them extremely
versatile intermediates for organic synthesis.1 It is therefore
not surprising that the enantioselective synthesis2 and
transformations3 of epoxides are current topics of significant
activity. Among the myriad of nucleophiles that have been
employed in ring openings, halide ions (which afford the
corresponding vicinal halohydrins) have received consider-
able attention.4,5 The classical reagents for halohydrin
synthesis are strong Lewis4 or hydrohalic acids,6 which
provide powerful electrophilic activation. Methods for the
asymmetric synthesis of chlorohydrins by enantioselective
ring opening of epoxides have relied upon the use of
stoichiometric amounts of chiral Lewis acid halides.7 A
conceptually distinct approach involves nucleophilic activa-
tion of Lewis acids (e.g., TMSCl) by Lewis bases (e.g.,
phosphines).8,9 This method offers unique opportunities for
asymmetric catalysis by disconnecting the roles of activator
and nucleophile. Nevertheless, catalytic, enantioselective
ring opening of epoxides to afford enantiomerically enriched
chlorohydrins has yet to be reported.
In the context of our studies on Lewis base-promoted aldol

additions of trichlorosilyl enolates,10 we assayed the reaction
of epoxides with these enolates. To our surprise, we found
the exclusive formation of the corresponding chlorohydrins.
Since the enolate was not formally involved, we felt that
SiCl4 should be a suitable source of chloride ion and, thus,
initiated a program on the (chiral) Lewis base-promoted

opening of epoxides with this and other chlorosilanes. In
this paper, we wish to disclose the first catalytic enantio-
selective ring opening of epoxides to afford optically active
chlorohydrins.
Our initial experiments with SiCl4 employed HMPA and

cyclohexene oxide. Since HCl (an obvious contaminant in
SiCl4) is known to open epoxides with ease,6 it was essential
to establish that the SiCl4 was HCl free. Further, it was
necessary to establish if SiCl4 alone could open the epoxide
and thus compete with the Lewis base-catalyzed pathway.
To this end, we developed a strict protocol whereby, for each
epoxide, freshly distilled SiCl4 was employed in an uncata-
lyzed reaction, and the background was monitored by 1H
NMR spectroscopy. In all cases studied (vide infra), <5%
conversion was detected even at room temperature. Thus
assured that SiCl4 could not affect ring opening, we then
surveyed a number of Lewis bases for their ability to
promote the opening of cyclohexene oxide as the test
substrate. Low-temperature 1H NMR studies indicated that
as little as 10 mol % of HMPA, DMPU, or pyridine all
promoted the reaction efficiently. Given our success with
chlorosilane activation using phosphoramides we chose the
combination of HMPA and SiCl4 as our standard conditions.
Thus, treatment of cyclohexene oxide with 1.1 equiv of SiCl4
in the presence of 0.1 equiv of HMPA in CH2Cl2 at -78 °C
cleanly afforded trans-2-chlorocyclohexanol in 89% yield.
With a functional protocol in hand, we next surveyed a

variety of epoxide structures, Chart 1, to evaluate the steric
and electronic contributions to rate and regioselectivity. The
details of the ring-opening reactions are compiled in Table
1, and the product chlorohydrins are found in Chart 2.

Both cyclic and acyclic epoxides with various substitution
patterns cleanly afford the corresponding chlorohydrins in
excellent yields. Among the cyclic substrates, it was noticed
that cyclooctene oxide (3) reacted at a considerably lower
rate most likely due to hindered approach in the lowest
energy boat-twist chair conformation.11 Substrates 4 and
512 also reacted slowly, presumably for electronic reasons.
The opening of all epoxides was accompanied by inversion
of configuration as verified by comparison with the known
chlorohydrins.13 The regioselectivity in reactions of unsym-
metrical epoxides is governed by both steric and electronic
effects.14 This is illustrated in the high level but opposite
sense of regioselectivity in the opening of terminal epoxides
6 and 7. Surprisingly, both di- and trisubstituted epoxides
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(8 and 9) gave poor regioselectivities despite the presence
of an electronic bias.
The success of the HMPA-promoted reaction encouraged

us to examine the opening of meso epoxides in the presence
of chiral Lewis bases. The initial survey encompassed a
range of Lewis basic promoters and SiCl4 with 2 as the test
substrate. Among those promoters examined, the enantio-
merically pure phosphoramide 19 emerged as the most
enantioselective promoter.15 Next, a variety of chlorosilanes
was investigated in conjunction with 19 again using 2.16
Although reactions with all other chlorosilanes investigated
proceeded satisfactorily, the corresponding chlorohydrins
were essentially racemic. Thus, to investigate the generality
of opening of meso epoxides 1-5, we employed SiCl4 (1.1
equiv) in the presence of (R)-19 (0.1 equiv), in CH2Cl2 (0.1
M) at -78 °C to afford the chlorohydrins 10-14, (Table 2).
In all cases, the chlorohydrins were cleanly obtained in

excellent yields; however, the enantioselectivity of the reac-
tion was highly substrate dependent. For cyclic substrates,
there is a dramatic dependence on ring size; only 2 reacted
with significant enantioselectivity. Interestingly, the acyclic

substrates afforded chlorohydrins with much higher levels
of enantiomeric enrichment.
These reactions are mechanistically intriguing. Our

working hypothesis is that a complex between SiCl4 and the
phosphoramide undergoes ionization to produce a highly
reactive silicon cation and a chloride ion.18 Nucleophilic
opening occurs by activation of the epoxide through com-
plexation of the phosphorus/silicon cation followed by attack
with the chloride ion in an SN2 fashion, Scheme 1. The
origin of asymmetric induction is obscure at this time.
In summary, we have developed a synthetically useful and

mild procedure for the preparation of chlorohydrins from
epoxides with SiCl4 and catalytic amounts of HMPA. In
addition, the first catalytic enantioselective opening of meso
epoxides to afford enantiomerically enriched chlorohydrins
has been realized.
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Table 1. Ring Opening of Epoxides with SiCl4 in the
Presence of HMPAa

epoxide product (s) ratio time, min yield,b %

1 10 20 85
2 11 20 89
3 12 120c 94
4 13 120 96
5 14 180d 93
6 15a/15b 17/1 20 94
7 16a/16b 1/18 20 91
8 17a/17b 2.2/1 20 88
9 18a/18b 1/1.5 20 92

a Conditions: 1.1 equiv of SiCl4, 0.1 equiv of HMPA, 0.1 M in
CH2Cl2, -78 °C. Regioisomeric mixture determined by 1H NMR
analysis. b Yields of analytically pure material. c Reaction run at
room temperature/0.5 M. d Reaction run at 1.0 M.

Chart 2

Table 2. Catalytic Enantioselective Ring Opening of
Epoxidesa

epoxide time, h product yield,b % erc (config)

1 0.3 10 87 53.6/46.4
2 0.3 (+)-11 90 75.8/24.2 (S,S)d
3 132 12 95 51.0/49.0
4 3 (+)-13 94 93.5/6.5 (S,S)d
5 4 (+)-14 95 85.6/14.4 (S,S)e

a Conditions: 1.1 equiv of SiCl4, 0.1 equiv of (R)-19, in CH2Cl2,
-78 °C. b Yields of analytically pure material. c Determined by
CSP GC, SFC, or HPLC analysis; see the Supporting Information
for details. d Established by comparison of optical rotation to
literature values.17 e Assigned by analogy.
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